616 research outputs found

    Closed-loop separation control over a sharp edge ramp using Genetic Programming

    Full text link
    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Reθ3500Re_{\theta}\approx 3\,500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the backflow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid

    Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    Get PDF
    We present Herschel/HIFI observations of the three ground state transitions of H_2O (556, 1669, and 1113 GHz) and H_2^(18)O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H_2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H_2O or H_2^(18)O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 10^(13) cm^(–2). We find that the abundance of water relative to hydrogen nuclei is 1 × 10^(–8) in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H_2O) =5 × 10^(–8), which makes water a good traced of H_2 in translucent clouds. Observations of the excited transitions of H_2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T_(ex), in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T_(ex) ≃ 5 K and that the density n(H_2) in the translucent clouds is below 10^4 cm^(–3). We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas (~25 K) in those regions; evidently, they have not yet fully thermalized with the warmer (~50 K) translucent portions of the clouds

    Reading Videogames as (authorless) Literature

    Get PDF
    This article presents the outcomes of research, funded by the Arts and Humanities Research Council in England and informed by work in the fields of new literacy research, gaming studies and the socio-cultural framing of education, for which the videogame L.A. Noire (Rockstar Games, 2011) was studied within the orthodox framing of the English Literature curriculum at A Level (pre-University) and Undergraduate (degree level). There is a plethora of published research into the kinds of literacy practices evident in videogame play, virtual world engagement and related forms of digital reading and writing (Gee, 2003; Juul, 2005; Merchant, Gillen, Marsh and Davies, 2012; Apperley and Walsh, 2012; Bazalgette and Buckingham, 2012) as well as the implications of such for home / school learning (Dowdall, 2006; Jenkins, 2006; Potter, 2012) and for teachers’ own digital lives (Graham, 2012). Such studies have tended to focus on younger children and this research is also distinct from such work in the field in its exploration of the potential for certain kinds of videogame to be understood as 'digital transformations' of conventional ‘schooled’ literature. The outcomes of this project raise implications of such a conception for a further implementation of a ‘reframed’ literacy (Marsh, 2007) within the contemporary curriculum of a traditional and conservative ‘subject’. A mixed methods approach was adopted. Firstly, students contributing to a gamplay blog requiring them to discuss their in-game experience through the ‘language game’ of English Literature, culminating in answering a question constructed with the idioms of the subject’s set text ‘final examination’. Secondly, students taught their teachers to play L.A. Noire, with free choice over the context for this collaboration. Thirdly, participants returned to traditional roles in order to work through a set of study materials provided, designed to reproduce the conventions of the ‘study guide’ for literature education. Interviews were conducted after each phase and the outcomes informed a redrafting of the study materials which are now available online for teachers – this being the ‘practical’ outcome of the research (Berger and McDougall, 2012). In the act of inserting the study of L.A. Noire into the English Literature curriculum as currently framed, this research moves, through a practical ‘implementation’ beyond longstanding debates around narratology and ludology (Frasca, 2003; Juul, 2005) in the field of game studies (Leaning, 2012) through a direct connection to new literacy studies and raises epistemological questions about ‘subject identity’, informed by Bernstein (1996) and Bourdieu (1986) and the implications for digital transformations of texts for both ideas about cultural value in schooled literacy (Kendall and McDougall, 2011) and the politics of ‘expertise’ in pedagogic relations (Ranciere, 2009, Bennett, Kendall and McDougall, 2012a)

    Strong CH+ J=1-0 emission and absorption in DR21

    Get PDF
    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&

    Herschel observations of extra-ordinary sources: Detecting spiral arm clouds by CH absorption lines

    Get PDF
    We have observed CH absorption lines (J=3/2,N=1J=1/2,N=1J=3/2, N=1 \leftarrow J=1/2, N=1) against the continuum source Sgr~B2(M) using the \textit{Herschel}/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show `spiral arm' cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr~B2 envelope. The observations show that each `spiral arm' harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H2_2 column densities found at lower AVA_V by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which probably means that CH is depleted in the denser cores of these clouds.Comment: Accepted for publication in A&A, HIFI Special Issu

    Herschel-HIFI detections of hydrides towards AFGL 2591 (Envelope emission versus tenuous cloud absorption)

    Get PDF
    The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/2_2,- - 1/2_1,+) and CH+(J = 1 - 0, J = 2 - 1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules.Comment: Accepted for publication in Astronomy and Astrophysics (HIFI first results issue

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    corecore